Acta Cryst. (1954). 7, 379

Interatomic distances in the \gamma-phase compound Ag₅Zn₈.* By RICHARD E. MARSH, Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena 4, California, U.S.A.

(Received 29 January 1954)

The refinement of crystallographic parameters for the γ -phase compound Ag₅Zn₈ has been undertaken by least-squares analyses of powder and single-crystal diffraction photographs prepared with copper X-radiation; these parameters have been used to calculate interatomic distances in this compound.

The sample was prepared by heating stoichiometric quantities of metallic silver and zinc in a sealed quartz tube to about 650° C. Loss of zinc by distillation was checked by weighing the ingot, and was found to be negligible. Powder photographs, prepared in a Straumanistype Philips camera, were measured with a steel rule and analyzed by a least-squares method (Shoemaker, Marsh, Ewing & Pauling, 1952); the resultant cell constant for the cubic unit cell is

$$a_0 = 9.3407 \pm 0.0003$$
 Å
($\lambda = 1.54050$ Å for Cu $K\alpha_1$; 1.54434 for $K\alpha_2$),

where the uncertainty is the calculated standard deviation. This is in good agreement with the value 9.327 kX. (9.344 Å) reported by Westgren & Phragmén (1925) for a sample containing a slight excess of zinc.

A small single crystal was isolated from the ingot and was oriented by Laue photography. Multiple-film Weissenberg photographs were prepared for the equator and first six layer lines, the axis of rotation being the a axis. Thus, all of the reflections within the sphere of copper radiation were checked; of the total of 112 independent reflections, 92 were actually observed. The space group was confirmed as being T_d^3 -I43m, as first reported by Bradley & Thewlis (1926). Three successive least-squares refinements of the five atomic positional parameters were performed, all of the observed reflections being included in the calculations. Since the space group is non-centrosymmetric, the minimization was performed on $(F_{o}^{2}-F_{c}^{2})$ values. The starting parameters were those reported by Bradley & Gregory (1931) for the compound Cu₅Zn₈, and the weighting scheme was similar to that of Shoemaker et al. (1952). In the final least-squares adjustment, the maximum shift in any parameter was 0.003 Å.

The resultant atomic parameters and the standard deviations (with the starting parameters listed in parentheses) are:

* Work done under Contract N6onr-24432 between the California Institute of Technology and the Office of Naval Research. Contribution No. 1878 from the Gates and Crellin Laboratories.

The final calculated F values, which included an empirical temperature factor with B = 0.58 Å², yielded an R factor of 0.098 for the 92 observed reflections.

In Table 1 there are listed, for each type of atom, the number and kind of neighboring atoms together with the corresponding interatomic distances and standard devia-

Table 1. Atomic distances in Ag₅Zn₈

Atom	Neighbo	r D	istance (Å)	S.d.	n
Ag_{I}	Ag _{II} (3	3)	2.864	0.005	0.47
(1·328 Å)		S)	2.820	0.011	0.36
,		3ý –	2.663	0.010	0.67
	Zn_{II} (3	B)	2.721	0.010	0.53
Ag_{II}	Agı (2)	2.864	0.005	0.47
(1-340 Å)	Ag _{II} (1	l)	2.707	0.012	0 ∙90
	Zn_I (2	2)	2.710	0.006	0.57
	Zn11 (2	2)	2.682	0.011	0.62
	Zn _{II} (4	L)	2.966	0.007	0.22
	Zn_{Π} (2)	2)	2.978	0.011	0.21
$\mathbf{Zn}_{\mathbf{I}}$	Agı (S	3)	2.820	0.011	0.36
(1·223 Å)	Ag _{II} (S	3)	2.710	0.006	0.57
	Zn_I (3	3)	2.959	0.032	0·14
	Zn_{II} (3	3)	2.755	0.023	0.31
Znīī	Ag _I (1	L)	2.663	0.010	0.67
(1·229 Å)		L)	2.721	0.010	0.53
, ,		Ú)	2.682	0.011	0.65
		2)	2.966	0.007	0.22
		Ľ)	2.978	0.011	0.21
	Zn_I (1	L)	2.755	0.023	0.31
	Zn_{II} (4)	ŧ)	2.771	0.004	0.30

tions. If these interatomic distances are used to calculate bond numbers n and valences according to Pauling's theory (Pauling, 1947, 1949), the resulting valences for the various kinds of atoms are:

Ag_I, 6.0; Ag_{II}, 5.5; Zn_I, 4.1; Zn_{II}, 4.0.

The standard deviations in the bond distances lead to an estimated probable error of about 0.2 units in the calculated valences. The single-bond radii corresponding to these valences are given in parentheses below each type of atom in Table 1; these radii were the ones used to calculate the bond numbers n.

References

- BRADLEY, A. J. & GREGORY, C. H. (1931). *Phil. Mag.* (7), **12**, 143.
- BRADLEY, A. J. & THEWLIS, J. (1926). Proc. Roy. Soc. A, 112, 678.
- PAULING, L. (1947). J. Amer. Chem. Soc. 69, 542.
- PAULING, L. (1949). Proc. Roy. Soc. A, 196, 23.
- SHOEMAKER, D. P., MARSH, R. E., EWING, F. J. & PAU-LING, L. (1952). Acta Cryst. 5, 637.
- WESTGREN, A. & PHRAGMÉN, G. (1925). *Phil. Mag.* (6), **50**, 311.